National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track

Wendy M. Williams and Stephen J. Ceci

Department of Human Development, Cornell University, Ithaca, NY 14853

National randomized experiments and validation studies were conducted on 873 tenure-track faculty (439 male, 434 female) from biology, engineering, economics, and psychology at 371 universities/colleges from 50 US states and the District of Columbia. In the main experiment, 363 faculty members evaluated narrative summaries describing hypothetical female and male applicants for tenure-track assistant professorships who shared the same lifestyle (e.g., single without children, married with children). Applicants’ profiles were systematically varied to disguise identically qualified women versus men. Results revealed a 2:1 preference for women by faculty of both genders across both math-intensive and non-math-intensive fields, with the single exception of male economists, who showed no gender preference. Results were replicated using weighted analyses to control for national sample characteristics. In follow-up experiments, 144 faculty evaluated competing applicants with differing lifestyles (e.g., divorced mother vs. married father), and 204 faculty compared same-gender candidates with children, but differing in whether they took 1-y-parental leaves in graduate school. Women preferred divorced mothers to married fathers; men preferred mothers who took leaves to mothers who did not. In two validation studies, 35 engineering faculty provided rankings using full curricula vitae instead of narratives, and 127 faculty rated one applicant rather than choosing from a mixed-gender group; the same preference for women was shown by faculty of both genders. These results suggest it is a propitious time for women launching careers in academic science. Messages to the contrary may discourage women from applying for STEM (science, technology, engineering, mathematics) tenure-track assistant professorships.

Women considering careers in academic science confront stark portrayals of the treacherous journey to becoming professors. Well-publicized research depicts a thicket of obstacles standing between female graduate students and tenure-track positions, including inadequate mentoring and networking (1); a chilly social climate (2); downgrading of work products such as manuscripts (3), grant proposals (4), and lectures (5); and gender bias in interviewing and hiring (6–9). Numerous blue ribbon panels and national reports have concluded that implicit, and sometimes explicit, attitudes pervade the hiring process and negatively influence evaluations of female candidates and their scholarship, contributing to women’s underrepresentation within the academy (e.g., refs. 10–13).

Women’s underrepresentation in academic science is hardly trivial. In life and social sciences, women now earn the majority of doctorates, but they make up a minority of assistant professors. In 1993–1995, 28.4% of assistant professors were women, but 41.6% of Ph.D.s awarded in the same cohort went to women. That is, almost one-third of the women did not advance from receiving their Ph.D. to an assistant professorship (see ref. 14, figure 5). More recently, in 2008–2010, this gap widened to 22 percentage points (53.2% of doctorates to women; 31.6% of assistant professorships to women), and this gap persisted after controlling for demographics, degree characteristics, and field (15). [This winnowing of women in the STEM (science, technology, engineering, mathematics) tenure-track pipeline is a result of women Ph.D.s being far less likely than men to apply for tenure-track jobs, rather than to women applying but being rejected at higher rates than men (14).] Against this bleak backdrop, it is perhaps no surprise that talented young women opt out of the STEM tenure track either by not applying for assistant professorships at the same rate as men or, in some fields, by not majoring in them in college in the first place (14).

The point at which scientists choose to apply for tenure-track assistant professorships is a key juncture in understanding the problem of women’s underrepresentation. Once hired, women prosper in the STEM professoriate (14, 16–18): They are renumerated, persist, and are promoted at rates roughly comparable to men’s (14) after controlling for observable characteristics, including academic productivity. However, to be hired and eventually tenured, women must first apply. Unfortunately, despite their success once hired, women apply for tenure-track positions in far smaller percentages than their male graduate student counterparts (14, 16, 18). Why might this be?

One reason may be omnipresent discouraging messages about sexism in hiring, but does current evidence support such messages? Despite this question’s centrality to any informed discussion about women’s underrepresentation in academic science, only one experimental study (7) contrasted faculty ratings of the relative “hireability” of hypothetically identical qualified women and men. Results showed that both female and male psychology faculty members downgraded a hypothetical woman’s academic record compared with an identical man’s. However, this study

Significance

The underrepresentation of women in academic science is typically attributed, both in scientific literature and in the media, to sexism hiring. Here we report five hiring experiments in which faculty evaluated hypothetical female and male applicants, using systematically varied profiles disguising identical scholarship, for assistant professorships in biology, engineering, economics, and psychology. Contrary to prevailing assumptions, men and women faculty members from all four fields preferred female applicants 2:1 over identically qualified males with matching lifestyles (single, married, divorced), with the exception of male economists, who showed no gender preference. Comparing different lifestyles revealed that women preferred divorced mothers to married fathers and that men preferred mothers who took parental leaves to mothers who did not. Our findings, supported by real-world academic hiring data, suggest advantages for women launching academic science careers.

Author contributions: W.M.W. and S.J.C. designed research, performed research, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

†To whom correspondence should be addressed. Email: wendywilliams@cornell.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1418878112/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1418878112
was published 16 y ago and involved only one field, psychology, a discipline that is more than 50% female (14).

There are two critical omissions from the current data landscape. First, no experimental study of tenure-track faculty hiring in math-intensive fields has ever evaluated whether bias can explain women’s underrepresentation in those fields today. This is important because it is in math-intensive fields that women are most underrepresented (see ref. 14 for historical and current data). Second, no current experimental study demonstrating sexist hiring is based on actual faculty members who were asked to rate identically qualified tenure-track assistant professor applicants. Instead, past studies have used ratings of students’ hirability for a range of posts that do not include tenure-track jobs, such as managing laboratories or performing math assignments for a comp. However, hiring tenure-track faculty differs from hiring lower-level staff: it entails selecting among highly accomplished candidates, all of whom have completed Ph.D.s and amassed publications and strong letters of support. Hiring bias may occur when applicants’ records are ambiguous, as was true in studies of hiring bias for lower-level staff posts, but such bias may not occur when records are clearly strong, as is the case with tenure-track hiring. Thus, we focused on male and female assistant professor candidates who were identically and unambiguously strong and used tenure-track tenure-track STEM faculty members from all 50 U.S. states to rate the role of gender bias in tenure-track faculty hiring.

This program of research consisted of five experiments involving 873 tenure-track faculty members from 371 colleges and universities, spanning 50 states and the District of Columbia. We investigated faculty hiring preferences for hypothetical candidates in two math-intensive fields in which women are substantially underrepresented (engineering and economics) and two non-math-intensive fields in which women are well represented (biology and psychology; see ref. 14, figure 4A, for current and historical data on women in these fields). We used (with minimal changes) the method for identifying gender bias in hiring that has been used frequently in past studies (6, 7, 19): We compared the likelihood of identically qualified women and men (named Dr. X, Dr. Y, and Dr. Z, and differing across faculty raters solely in the gender pronoun used to refer to them) being ranked first by individual faculty members for a tenure-track assistant professorship (SI Appendix).

To illuminate contextual factors in faculty decision-making, we also studied the effects of candidate lifestyle on hiring preference for identical male and female candidates. For example, in experiment 1, we included two applicants, both of whom were unmarried and childless or, in another condition, both of whom were married with preschool-age children and stay-at-home spouses, to see how a candidate’s perceived hirability was influenced by various lifestyle situations. In experiment 2, which focused on nonmatching lifestyles, we included a married father of two with a stay-at-home spouse competing against a single mother of two with an absent ex-spouse (in addition to a third, “foil,” candidate appearing in every contest, as described later). Because so much research points to fertility decisions as key determinants of women’s decisions to opt out (20–23), in experiment 3 we explored the relative hirability of identical mothers (or in a separate condition, identical fathers) who either took or did not take a 1-y parental leave in graduate school. [Women’s perceptions that an extended maternity leave will cause them to be viewed as less committed to their profession (22, 23) may influence some women to opt out entirely.] Experiment 4 used the same method as experiment 1, except faculty members rated candidates’ full curricula vitae (CVs), rather than narrative summaries. In experiment 5, faculty members rated only a single applicant (either the candidate that included their demeanor at the search committee dinner. Two forms of these descriptions were developed: one with traditionally female adjectives (“imaginative, highly creative, likeable, kind, socially skilled”) and one with traditionally male adjectives (“analytical, ambitious, independent, stands up under pressure, powerhouse”) (24, 25). In every case, actual
candidate gender was counterbalanced with adjective gender across versions, so that half of the faculty members were sent a given candidate depicted as a woman described with male adjectives and half were sent the same woman depicted with female adjectives, and vice versa for male candidates.

In all 20 sets of materials in experiments 1–3, the contest was between Drs. X, Y, and Z (with Y being the foil candidate). Faculty members were sent emails containing one of the 20 versions and asked to rank the three candidates for an assistant professorship in their department. Versions were sent out randomly after stratification of the sample by the three major Carnegie classifications of institutions (doctoral-granting universities, master’s colleges and universities, and baccalaureate colleges), department (biology, engineering, economics, psychology), and faculty gender. The 20 versions of materials allowed us to compare rankings between faculty raters of Dr. X as a woman with rankings of Dr. X as a man. Again, both had identical credentials and were described with identical adjectives; the sole difference was the gender pronoun used to describe Dr. X: “he” in one version and “she” in the other. The same manipulation was performed for Dr. Z. (Remember that Dr. Y was the foil, pretested to be slightly weaker than Dr. X and Dr. Z, but still excellent; the foil was ranked first 2.53% of the time.)

Our method enabled us to contrast the hirability of women and men candidates in a between-subjects design, with counterbalancing of candidate gender and adjective gender between faculty members (half female, half male), so that rankings of identically qualified candidates of different genders and lifestyles could be compared across 873 faculty from 371 institutions in 50 US states. Multiple validations (described here and in the SI Appendix) were incorporated into our design, including use of full vitas to ensure results matched those for vita summaries, use of a paid sample with 91% response rate to validate results from the national sample, and validation of adjectives to ensure past findings of gender connotations applied to faculty in our study. Our experimental design thus disentangled the relative effects on hiring preferences of applicant gender, applicant lifestyle, faculty gender, and faculty field.

Results and Discussion

In experiments 1–3, 20 sets of materials were sent to 2,090 faculty members across the United States, half female and half male; 711 voluntarily ranked candidates (34.02%). (Cornell University’s institutional review board approved this study; faculty were free to ignore our emailed survey.) The response rates for every cell (subject to the common lifestyle by gender by gender, 3 × 4 × 2) were evaluated in a logistic regression and shown to be unrelated to the findings. Our analyses examined which candidate was ranked first, under which conditions, by faculty of each gender and field. We analyzed the data using two independent approaches [traditional unweighted analysis (simple random sample, reported herein) and weighted analysis] to validate the generalizability of our findings. The unweighted analysis used logistic regression to predict faculty rankings of candidates. The weighted analysis assigned a sample weight to each faculty member (on the basis of the numbers of women/men in her/his academic department, the institution’s Carnegie classification (1 = doctoral, 2 = master’s, 3 = baccalaureate), and the number of institutions of this type both in the overall sample and United States as a whole. These weighting variables were also calculated and analyzed for the 1,379 nonrespondents. In the SI Appendix, we describe detailed results for the unweighted analysis; results for the weighted analysis were comparable. (Further descriptions of methods, analyses, and results, as well as candidate summaries, full CVs, and cover letters, appear in the SI Appendix.) We also conducted multiple validity checks to assess the representativeness of the 34.02% sample of respondents. First, we offered $25 to 90 solicited subjects if they provided data; 82 did so (91.1% response rate), and the distribution of these data matched the full sample. Second, experiment 4 was an additional validation, using 35 engineering faculty members who evaluated full CVs, rather than narrative summaries of applicant credentials. Third, in experiment 5, 127 faculty members rated a single candidate from experiment 1, presented alternatively as male or female.

Experiment 1. The main experiment (n = 363: 182 women, 181 men) consisted of a between-subjects contest between identically qualified female and male applicants for an assistant professorship who shared academic credentials and lifestyles (plus the Y foil candidate). The six lifestyles studied were single without children, married without children, married with children and stay-at-home spouse, married with children and spouse working outside home, married with children and spouse working inside home, and divorced with children. Candidates’ children were always described as two preschoolers. A random stratified sampling procedure was used (SI Appendix). Our data revealed an overall strong preference for female applicants over identically qualified males who shared the same lifestyle (Fig. 1). This preference for women was observed across all three Carnegie classifications of institutions, all four fields, and both genders of faculty, with the exception of male economists (see following). Effect sizes for this preference for women were large (ds between 0.8 and 1.42). Women were ranked first by 67.3% of faculty, representing a highly significant 2:1 advantage (n = 339; χ² = 40.38; P < 0.0001). There was no evidence that women were rated more often in any of the three major fields studied in the population of US colleges and universities. These weighting variables were also calculated and field. We also conducted multiple validity checks to assess the representativeness of the 34.02% sample of respondents. First, we offered $25 to 90 solicited subjects if they provided data; 82 did so (91.1% response rate), and the distribution of these data matched the full sample. Second, experiment 4 was an additional validation, using 35 engineering faculty members who evaluated full CVs, rather than

The data from experiment 1 were reanalyzed using sample weights. As reported in the SI Appendix, these weighted analyses reaffirmed our conclusions, suggesting that any nonrandomness costs were trivial. Considered alongside the same results, which were again obtained with the 91% response-rate paid sample (described later), this strongly suggests our results generalize to the four fields studied in the population of US colleges and universities.

Experiment 2. In real-world hiring, competing applicants do not necessarily share the same lifestyle, and bias has historically been alleged to disadvantage divorced mothers, for example, while advantaging married fathers. Experiment 2 (n = 144: 80 men, 64 women) consisted of a hiring comparison with targeted hypotheses, pitting applicants with differing lifestyles that may occur in the real world, counterbalanced for adjective gender. We found that the 2:1 preference for women in the main experiment changed in some of these cross-lifestyle contrasts (Fig. 3). One contrast was a divorced mother with two preschool-age children whose ex-husband does not relocate with her, pitted against a married father of two whose spouse is a stay-at-home mother.
Another contrast was a married father with a stay-at-home spouse competing against a single woman with no children. We found that female faculty strongly and significantly preferred divorced mothers over identically qualified married fathers (71.4% vs. 28.6%, respectively), whereas male faculty members showed the opposite but nonsignificant trend (42.9% favoring divorced mothers vs. 57.1% favoring married fathers). The overall analysis combining both genders of faculty showed a significant difference between female and male faculty’s preferences for married fathers versus divorced mothers (n = 63; $\chi^2 = 5.14; P = 0.04$). Because female faculty members are underrepresented in math-intensive fields, women’s strong preference for divorced mothers over married fathers may be limited in its effect on faculty hiring decisions. [Note, however, that in the experiment 1 matching-lifestyle contest between identically qualified divorced mothers and divorced fathers, male faculty members chose divorced mothers 60.7% of the time, and female faculty preferred divorced mothers 70.0% of the time (overall preference for these divorced women = 65.5%; n = 58; $\chi^2 = 5.59; P = 0.018$).] In addition, in the competition between a married father and a single woman without children, everyone preferred the single woman: 3:1 for male faculty (73.0%) and 4:1 for female faculty (78.1%), which are statistically equivalent (n = 69; $\chi^2 = 0.25; P = 0.62$).

Experiment 3. One lifestyle factor of current national policy interest is the effect of taking parental leave during graduate school. In experiment 3 (n = 204: 109 women, 95 men), we explored faculty’s hiring preferences for candidates (with children) who take versus do not take 1-y parental leaves in graduate school. We contrasted two identically qualified members of one gender (all parents, with male and female candidates evaluated in separate conditions) who either took or did not take leaves, counterbalanced for adjective gender. Male and female faculty responded differently to hypothetical candidates based on candidate gender and leave status (n = 190; $\chi^2 = 4.21; P = 0.04$; Fig. 4). Male faculty members preferred 2:1 mothers who took 1-y leaves over mothers matched in academic quality who took no leaves (65.9% to 34.1%; n = 44; $\chi^2 = 4.45; P = 0.049$), but these male faculty members showed no preference between fathers who took vs. did not take leaves (48.9% vs. 51.1%). Female faculty members also showed no preference regarding fathers’ leave status (53.6% with leave vs. 46.4% with no leave). However, female faculty members (n = 45) showed a trend toward preferring mothers who took no extended leaves over equally qualified mothers who took leaves: 62.2% to 37.8%. Although this trend was not significant when evaluated solely within female faculty members, in an overall analysis, female and male faculty members showed significantly different preferences for mothers with versus without parental leaves (n = 89; $\chi^2 = 7.05; P = 0.01$).

Experiment 4. Experiment 4 was a validation study to determine whether rankings of candidates based on narrative summaries would be replicated if we used full CVs. The use of narrative summaries in experiments 1–3 and 5 was essential in the national cross-field data collection to avoid problems of noncomparability inherent in sending the same CV to small teaching-intensive colleges and large research-intensive universities. This is because a vita viewed as a “9.5 out of 10” at a doctoral-intensive institution would show more research productivity than is typical of

![Fig. 1. Hirability of identically qualified candidates with matching lifestyles shown by field: percentage of faculty members ranking the applicant number one. Faculty members exhibit approximately a 2:1 preference for hiring women assistant professors over identically qualified men. Faculty members of both genders in all four fields expressed a strong hiring preference for female over male applicants with identical qualifications and lifestyles, compared across faculty in six counterbalanced experimental conditions (n = 339: 171 women and 168 men; $\chi^2 = 40.38; P < 0.0001$, excluding tied ranks and choice of foil), with the exception of male economists, who ranked both genders equivalently. Engineering data include validation sample of 35 engineering faculty.](#)

![Fig. 2. Percentage of female applicants chosen over identically qualified men with matching lifestyles, shown by lifestyle. Percentage of faculty members who preferred to hire the female applicant over the identically qualified male applicant with the same lifestyle, shown for six different lifestyles (n = 339; all preferences for women over men are significant with the exception of that for mothers with spouses running home-based businesses, with significance levels ranging from z = 2.23 ($P = 0.025$) to z = 3.18 ($P = 0.0013$)).](#)
vitas of applicants to most small colleges emphasizing teaching.

In experiment 4, 35 engineering professors at 27 doctoral-intensive institutions (19 men, 16 women) ranked three applicants for whom they had full CVs; this was the same task used in experiment 1, except with full CVs substituted for narrative summaries. The engineers ranked the female significantly higher than the male applicant \((n = 33; \chi^2 = 8.76; P = 0.003)\) by nearly the same margin found among engineering faculty members in experiment 1. The woman candidate was chosen over the identical man by an even larger margin than in experiment 1 (75.8%, vs. 25 of 33 engineers chose the woman, with two choosing the foil, vs. 65.7% of 84 engineers choosing the woman in experiment 1), although this difference was not significant \((n = 117; \chi^2 = 0.92; P = 0.34)\). This finding confirms that narrative summaries were suitable proxies for CVs and resulted in equivalent preference for women, while having the advantage of comparability across institutions, fields, and subfields.

Experiment 5. Would faculty members still prefer female applicants if faculty are asked to evaluate one individual, rather than choosing among men and women? It seems possible that comparing female and male applicants could tilt faculty responses in a socially desirable direction (i.e., endorsing gender diversity). However, rating one applicant avoids socially desirable responding because there is no contrast between a man and woman. If, comparing ratings across faculty members, people rate male applicants higher than females when presented with only one applicant, this could suggest implicit antifemale biases that emerge when raters have no explicit male-female comparison. It is possible that raters may subconsciously or consciously counter such biases when making a gender comparison, as might have occurred in the earlier experiments, perhaps out of desire for gender diversity (or at least the appearance of it), when explicitly forced to choose between a man and woman. Conversely, if faculty members rate women equal to or higher than otherwise identical men when they are presented with only one applicant, this suggests they have internalized the values of gender diversity and exhibit a desire for it, even when evaluating an applicant not pitted against an opposite-gender competitor.

We asked 127 faculty members (63 women, 64 men, from 82 institutions) to rate a single applicant, using the descriptive narrative summaries from experiment 1, on a scale of 1 to 10, ranging from “1 = cannot support” to “10 = truly extraordinary/exceptional; do whatever it takes to recruit.” Unsurprisingly, given the high level of competence of short-listed applicants for tenure-track positions, 89% of faculty rated the applicant on the upper half of the scale. A two-way between-subjects ANOVA revealed a significant main effect favoring the female applicant \(F(1,123) = 16.48; P < 0.0001\); she was rated one scale point higher than an identical man \((8.20 \text{ vs. } 7.14; \eta = 0.12)\). There was no significant effect for gender of faculty rater \(F(1,123) = 2.75; P = 0.10\), but there was a marginal interaction between gender of faculty rater and gender of applicant \(F(1,123) = 3.36; P = 0.07; \eta = 0.03\), reflecting a larger down-rating of male applicants by male than by female faculty members (however, this effect was not significant after Bonferroni correction). Thus, faculty members of both genders favored the female applicant over the identically qualified male, which is consistent with the preference for women observed in the earlier experiments, in which faculty members chose among applicants of both genders. The existence of a preference for women when faculty rate only one applicant suggests that norms and values associated with gender diversity have become internalized in the population of US faculty.

General Discussion. Our experimental findings do not support omnipresent societal messages regarding the current inhospitality of the STEM professoriate for women at the point of applying for assistant professorships (4–12, 26–29). Efforts to combat formerly widespread sexism in hiring appear to have succeeded. After decades of overt and covert discrimination against women in academic hiring, our results indicate a surprisingly welcoming atmosphere today for female job candidates in STEM disciplines, by faculty of both genders, across natural and social sciences in both math-intensive and non-math-intensive fields, and across fields already well-represented by women (psychology, biology) and those still poorly represented (economics, engineering). Women struggling
with the quandary of how to remain in the academy but still have extended leave time with new children, and debating having children in graduate school versus waiting until tenure, may be heartened to learn that female candidates depicted as taking 1-y parenting leaves in our study were ranked higher by predominantly male voting faculties than identically qualified mothers who did not take leaves.

Our data suggest it is an auspicious time to be a talented woman launching a STEM tenure-track academic career, contrary to findings from earlier investigations alleging bias (3–13), none of which examined faculty hiring bias against female applicants in the disciplines in which women are underrepresented. Our research suggests that the mechanism resulting in women’s underrepresentation today may lie more on the supply side, in women’s decisions not to apply, than on the demand side, in antifemale bias in hiring. The perception that STEM fields continue to be inhospitable to women can become self-reinforcing by discouraging female applicants (26–29), thus contributing to continued underrepresentation, which in turn may obscure underlying attitudinal changes. Of course, faculty members may be eager to hire women, but they and their institutions may be inhospitable to women once hired. However, elsewhere we have found that female STEM professors’ levels of job satisfaction is comparable to males’, with 87% of both genders rating themselves “somewhat to very” satisfied in 2010 (figure 19 in ref. 14). Also, it is worth noting that female advantages come at a cost to men, who may be disadvantaged when competing against equally qualified women. Our society has emphasized increasing women’s representation in science, and many faculty members have internalized this goal. The moral implications of women’s hiring advantages are outside the scope of this article, but clearly deserve consideration.

Real-world data ratify our conclusion about female hiring advantage. Research on actual hiring shows female Ph.D.s are disproportionately less likely to apply for tenure-track positions, but if they do apply, they are more likely to be hired (16, 30–34), sometimes by a 2:1 ratio (31). These findings of female hiring advantage were especially salient in a National Research Council report on actual hiring in six fields, five of which are mathematically intensive, at 89 doctoral-granting universities (encompassing more than 1,800 faculty hires): “once tenure-track females apply to a position, departments are on average inviting more females to interview than would be expected if gender were not a factor” (ref. 16, p. 49). [See SI Appendix for descriptions of other audits of actual hiring that accord with this view, some dating back to the 1980s. Many studies have argued (see ref. 14) that because only the very top women persist in math-intensive fields, their advantage in being hired is justified because they are more competent than the average male applicant. This is why an accurate evaluation of gender preference in hiring depends on data from an experiment in which competence is held constant.] Thus, real-world hiring data showing a preference for women, inherently confounded and open to multiple interpretations because of lack of controls on applicant quality, experience, and lifestyle, are consistent with our experimental findings.

Although the point of entry into the professoriate is just one step in female faculty’s journey at which gender bias can occur, it is an extremely important one. Elsewhere we have examined subsequent factors in women’s versus men’s academic science careers, such as gender differences in remuneration, research productivity, citations, job satisfaction, and promotion and concluded that with some exceptions, the academy is gender-fair (14). We hope the discovery of an overall 2:1 preference for hiring women over otherwise identical men will help counter self-handicapping and opting-out by talented women at the point of entry to the STEM professoriate, and suggest that female underrepresentation can be addressed in part by increasing the number of women applying for tenure-track positions.

ACKNOWLEDGMENTS. We thank K. Clermont, D. Dunning, M. Macy, and J. Mendle for comments; F. Vermeulen, M. Wells, J. Bunge, F. Thoemmes, and S. Schwager for statistical advice; M. Bevia for graphic design; seven anonymous reviewers, one anonymous statistician who replicated our findings, and the editor; and 873 faculty who generously participated in our experiments. Research was supported by NIH Grant R01GM097920-01. We thank K. Clermont, D. Dunning, M. Macy, and J. Mendle for comments; F. Vermeulen, M. Wells, J. Bunge, F. Thoemmes, and S. Schwager for statistical advice; M. Bevia for graphic design; seven anonymous reviewers, one anonymous statistician who replicated our findings, and the editor; and 873 faculty who generously participated in our experiments. Research was supported by NIH Grant R01GM097920-01.